












































related techniques) he knows will have payoff. 

TRANSFORM(I,J:INT,   X,Y:STRING;   SUBSTITUTE) 

SUBSTRING(I, J, X CONCAT Y) 

TO 

SUBSTITUTE(Z:X CONCAT Y,   SUBSTRING(I,J,Z))   (I,J,X,Y) 

In general,  a transformation rule has the format 

TRANSFORM^ pattern variables ) ; < action variables ) ) 

( pattern) 

TO 

( replacement) 

All lexemes in the pattern and replacement are taken literally except for the 

(pattern variables)  and (action variables).   The former are dummy arguments, 

statement-matching variables,   etc.;  the latter denote values used to derive the 

actual transformation from the input transformation schemata.   In the above case, 

the procedure SUBSTITUTE is called to expand CONCAT within SUBSTRING as 

the third argument.   The simplified result,   0>,   is applied to the dummy argu- 

ments.   Hence,   calls such as SUBSTRING^,2*N+C, AA CONCAT B7) are trans- 

formed into calls on ^>(3,2*N+C, AA, B7) 

When defining an extension set,  the programmer defines the unit data types, 

unit operations,  and additionally the significant transformations on the problem 

domain.   These domain-dependent transformations are adjoined to the set of 

base transformations to produce the total transformation set.   The program,  as 

written,   specifies the function to be computed;  the transformation set provides 

an orthogonal statement of how the computation is to be optimized. 

For example,  in adding a string manipulation extension,  one would first 

define the data type STRING (fixed length array of characters).   Next,one defines 

the unit operations:   LENGTH,  CONCATenate,  SUBSTRING,  SEARCH (for a 

string x as part of a string y starting at position i and return the initial index or 

zero if not present).   Finally,   one defines the transformations on program units 

involving these operations. 
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TRANSFORM(X,Y:STRING)  LENGTH(X CONCAT Y) 

TO  LENGTH(X)+LENGTH(Y) 

TRANSFORM(A,X,Y,Z:STRING; SUBSTITUTE) X CONCAT Y CONCAT Z 

TO  SUBSTITUTE^: Y CONCAT Z; X CONCAT A) (X.Y.Z) 

So long as the transformations are entirely local, they act only as macro 

replacements.    The significant transformations in an extension set are those 

which make global, far reaching changes to program or data.    Clearly, these 

changes will require knowledge, assumed or asserted, about that portion of 

the program affected by these changes. 

Consider,   for example,  the issue of string variables in the proposed extensior 

set.   If a string variable is to have a fixed capacity,  the type STRING is satisfactoi 

If variable capacity is desired but an upper bound can be established for each strin 

variable,  the type VARSTRING could be defined like string VARYING in PL/I.   If 

completely variable capacity is required,  a string variable would be implemented 

as a pointer to a simple STRING (i.e.,  PTR(STRING) ) with the understanding that 

assignment of a string value to such a string variable causes a copy of the string 

to be made and the pointer set to address the copy.      With these three possible 

representations available,   one would define the data type string variable to be 

ONEOF(STRING,   VARSTRING,   PTR(STRING)) 

Each string variable is one of these three data types.   To provide for the worst 

case,  the programmer could specify each formal parameter string variable to be 

This does not exhaust the list of possible representations for strings.   To avoid 

copying in concatenation, insertion, and deletion,  one could represent strings by 

linked lists of characters nodes:   each node consisting of a character and a pointer 

to the next node.    A string variable could then be a pointer to such node lists.    To 

minimize storage,  one could employ hashing to insure that each distinct sequence 

of characters is represented by a unique string-table-entry;  a string variable 

could then be a pointer to such string-table-entries.    Hashing and implementing 

strings by linked lists could be combined to yield still another representation of 

strings.    In the interest of brevity, we consider only three rather simple repre- 

sentations; however, the point we make is all the stronger when additional repre- 

sentations are considered. 
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ONEOF(STRING,  VARSTRING,  PTR(STRING)) and specify each local string 

variable to be a PTR(STRING).   A program so written would be correct,  but its 

performance would,  in general,  suffer from unused generality.   Each string 

variable whose length is fixed can be redeclared 

TRANSFORMS 1,D2:DECLIST,   S:STATLIST,    F:FORM,   X;   WHEN) 

WHEN   (CONSTANT(LENGTH(X)))   IN 
BEGIN Dl; DECL X:PTR(STRING) BYVAL F; D2; S END 

TO 

BEGIN   Dl;   DECL   X:STRING   BYVAL   F;   D2;   S   END 

The predicate WHEN appearing in a pattern is handled in somewhat the same 

fashion as are ASSERTions during program verification.   It is proved as part of 

the pattern matching; the transformation is applicable only if the predicate is 

provably TRUE and the literal part of the pattern matches.   Here,  it must be 

proved that LENGTH(X) is a constant over the block B and all ranges called  by B. 

If so,   the variable can be of type STRING.   Similarly,   if there is a computable 

maximum length less than a reasonable upper limit LIM,  then the data type 

VARSTRING can be used. 

TRANSFORM(Dl,D2:DECLIST,   B:BLOCK,   F:FORM,   K:INT,   X;   WHEN) 

BEGIN   Dl;   DECL   X:PTR(STRING)    BYVAL   F;   D2; 
WHEN(LENGTH(X) ^ K  A K ^ LIM)   IN   B 

END 

TO 

BEGIN   Dl;   DECL   X:VARSTRING  SIZE  K BYVAL  F;  D2;   B   END 

To prove an assertion for a variable X over some range,  it suffices to 

prove the assertion true of all expressions that are assignable to X in that range. 

An assertion about LENGTH(X) is reasonable to validate since it entails only 

theorem proving over the integers        —   once    the string manipulation routines 

are reinterpreted as operations on string lengths.   Fortunately,  most of the 

interesting predicates are of this order of difficulty.   Typical WHEN conditions 

are:   (1) a variable (or certain fields of a data structure) is not changed;  (2) an 

object in the heap is referenced only from a given pointer;  (3) whenever control 
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reaches a given program point, a variable always has (or never has) a given 

value (or set of values);  (4) certain operations are never performed on certain 

elements of a data structure.    Such conditions are usually easier to check than 

those concerned with correct program behavior, since only part of the action 

carried out by the algorithm is relevant. 

That is, the technique suggested above for simplifying proofs about string 

manipulation operators by considering only string lengths generalizes to many 

related cases.    To verify a predicate concerned with certain properties, one 

takes a valuation of the program on a model chosen to abstract those 

19 
properties.  ' The program is run by a special interpreter which performs 

the computation on the simpler data space tailored to the property.    To correct 

for the loss of information (e. g. , the values of most program tests are not 

available), the computation is conservative (e.g. , the valuation of a conditional 

takes the union of the valuations of the possible arms).    If the valuation in the 

model demonstrates the proposition,  it is valid for the actual data space.    While 

this is a sufficient condition, not a necessary one, an appropriate model should 

seldom fail to prove a true proposition. 

CONCLUSION 

An interpreter, a compiler, a source-level optimizer employing domain- 

specific transformations, and a program verifier each compute a valuation 

over some model.    Fitting these valuators together so as to exploit the comple- 

mentarity of their models is a central task in constructing a powerful program- 

ming tool. 
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APPENDIX:        A  BRIEF  DESCRIPTION  OF   ELI  SYNTAX 

To a first approximation, the syntax of ELI is like that of ALGOL 60 or 

PL/I.    Variables,  subscripted variables, labels, arithmetic and Boolean 

expressions, assignments,  gotos and procedure calls can all be written as in 

ALGOL 60 or PL/I.    Further, ELI is - like ALGOL 60 or PL/I - a block 

structured language.    Executable statements in ELI can be grouped together and 

delimited by BEGIN END brackets to form blocks.    New variables can be created 

within a block by declaration; the scope of such variable names is the block in 

which they are declared. 

The syntax of ELI differs from that of ALGOL 60 or PL/I most notably in the 

form of conditionals, declarations, and data type specifiers.    For the purposes of 

this paper,  it will suffice to explain only these points of difference.    (A more 

complete description can be found in [20]. ) 

A.l   Conditionals 

Conditionals in ELI are a special case of BEGIN END blocks.    In general, 

each ELI block has a value —the value of the last statement executed.    Normally, 

this is the last statement in the block.    Instead, a block can be conditionally 

exited with some other value Y by a statement of the form 

@ ==> Y; 
If £8 is TRUE then the block is exited with the value of Y ; otherwise, the next 

statement of the block is executed.    For example, the ALGOL 60 conditional 

if &1 then  rx else if @2 then Y2 else Y^ 

is written in ELI as 

BEGIN &l =£> Yx ; ®2 ==> Y2 ;   Y'g   END 

(Unconditional statements of an ELI block are simply executed sequentially — 

unless a goto transfers control to a different labeled statement. ) 

A. 2   Declarations 

The initial statements of a block may be declarations having the format 

DECL £: Jf S ; 

where £ is a list of identifiers, Jt is the data type,  and  S specifies the initiali- 

zation.   For example, 

DECL X,Y: REAL BYVAL A[I] ; 

This creates two REAL variables named X and Y and initializes them to separate 

copies of the current value of A[I].   The specification S may assume one of three 

forms: 
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(1) empty — in which case a default initialization determined by the data type 

is used. 

(2) BYVAL "V — in which case the variables are initialized to copies of the 

value of f. 

(3) SHARED "V — in which case the variables are declared to be synonymous 

with the value of 'V. 

A.3   Data   types 

Builtin data types of the language include:   BOOL,  CHAR,  INT,  and REAL. 

These may be used as data type specifiers to create scalar variables. 

Array variables may be declared by using the builtin procedure ARRAY. 

For example, 
DECL C:  ARRAY(CHAR)  BYVAL Y ; 

creates a variable named C which is an ARRAY of CHARacters.    The LENGTH 

(i.e. , number of components) and initial value of C is determined by the value of 'V. 

Procedure-valued variables may be defined by the builtin procedure PROC. 

For example, 

DECL   G:PROC(BOOL,ARRAY(INT);   REAL); 

declares G to be variable which can be assigned only those procedures which take 

a BOOL argument and an ARRAY(INT) argument and deliver a REAL result. 

A.4   Procedures 

A procedure may be defined by assigning a procedure value to a procedure- 

valued variable.    For example, 

IPOWER *- 
EXPR(X:REAL,N:INT; REAL) 
BEGIN DECL RrREAL BYVAL 1; FOR 1 TO N DO  R - R*X; R END 

assigns to IPOWER a procedure which takes two arguments, a REAL and an INT 

(assumed positive), and computes the exponential. 
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